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Abstract

Four theoretical and computational approaches used at the University of Michigan to analyze NMR paramagnetic relaxation
enhancement (NMR-PRE) are described. The primary objective of the theory is to describe the relationship of the NMR-PRE phe-
nomenon to the electron spin hamiltonian and the spin energy level structure when zero field splitting interactions are significant.
Four formulations of theory are discussed: (1) spin dynamics simulation; (2) the laboratory frame ‘‘constant HS’’ formulation; (3)
the Molecular Frame ‘‘constant HS’’ formulation; and (4) the zfs-limit ‘‘constant HS’’ formulation. No single theoretical approach
describes all important aspects of the relaxation mechanism in a fully satisfactory way. We use the four formulations in a comple-
mentary manner to provide as complete a picture of the relaxation mechanism as possible. We also discuss the integration of NMR-
PRE theory and recently developed theory of electron spin relaxation which accounts for effects of the permanent zfs hamiltonian.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For a number of years, we have been interested in
NMR relaxation induced by S > 1/2 paramagnetic met-
al ions in solution. Dipole–dipole coupling of the nucle-
ar magnetic moment, ~lI , and the dipolar field of
unpaired electron spin, ~BS , provides a highly efficient
pathway for NMR relaxation, so that millimolar or low-
er concentrations of metal ion will frequently provide
the principal relaxation mechanism for solvent protons.
Paramagnetic NMR relaxation enhancement (NMR-
PRE) involves an exchange of energy between the nucle-
ar (I) and electron (S) spins, a process that is dependent
on the resonant coupling of ~BS and ~lI . Because of the
resonance requirement, the relaxation mechanism de-
pends intimately on the motions, both coherent and sto-
chastic, of the electron spin vector. The physical
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situation is relatively simple for S = 1/2 ions, for which
the spin motion is driven by the electronic Zeeman ham-
iltonian (HZeem) plus, when it is present, the nuclear–
electron hyperfine hamiltonian (Hhf). For SP 1, the
situation is considerably more complicated because of
presence of permanent zero-field splitting (zfs) interac-
tions, H 0

zfs. H
0
zfs and HZeem are often of roughly compa-

rable magnitude; in common laboratory experiments,
H 0

zfs may be larger or smaller than HZeem depending
on the metal ion and laboratory field strength. When
H 0

zfs P HZeem, H 0
zfs exerts a critical influence on the elec-

tron spin motion and spatial quantization, which in turn
profoundly affects the NMR-PRE.

During the past 10 years, our laboratory has studied
various aspects of these phenomena theoretically and
experimentally [1–13] with the objective of understand-
ing the relationship of the NMR-PRE phenomenon to
the electron spin level diagram and the electron spin mo-
tion. Systematic studies of this relationship have also
been published by the laboratories of Kowalewski and
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Westlund in Sweden [14–16] and Kruk in Germany [17].
Experimental information concerning the physical
mechanism of NMR-PRE is derived primarily from
the analysis of magnetic relaxation dispersion (MRD)
profiles, in which the NMR relaxation rate of solvent
protons in paramagnetic solutions is measured as a
function of laboratory magnetic field strength across a
broad range (several orders of magnitude) of field vari-
ation. A plot of proton R1 vs field strength (the MRD
profile) is typically measured between about 10�4 and
2 T. For S P 1 ions, the low end of this range corre-
sponds to the zfs-limit ðH 0

zfs > HZeemÞ, where the spatial
quantization of the electron spin motion is aligned along
molecule-fixed coordinate axes, and the frequencies of
the coherent spin oscillations are determined by the
splittings of the zfs level diagram. (This assumes that
Brownian reorientation is not sufficiently rapid to
motionally average to zero the level structure of H 0

zfs.)
The opposite limit is that of high laboratory field
strength (the Zeeman-limit, HZeem > H 0

zfsÞ, where h~Si
executes a Larmor precession that is spatially quantized
along the field direction. This limit may or may not be
reached experimentally depending on the metal ion
and spin state and the magnitude of the zfs. In the inter-
mediate regime ðH 0

zfs � HZeemÞ, the spin motion is com-
plex and lacks well-defined spatial quantization.
Further complicating the situation is the fact that the
permanent electron spin hamiltonian

HSða; b; c; tÞ ¼ HZeem þ H 0
zfsða; b; c; tÞ; ð1Þ

depends on molecular orientation (a,b,c) and is explicit-
ly time-dependent due to Brownian reorientation. When
H 0

zfsða; b; c; tÞ P HZeem, the zero-order electron spin
wavefunctions are stochastic functions of time, which
greatly complicates the calculation.

The MRD profile depends on chemical and physical
parameters relating to both the I–S dipole–dipole ham-
iltonian (HIS), which mediates energy transfer between
the spin systems, and the electron spin hamiltonian
(HS), which drives the coherent motions of S. The form
of the MRD profile depends intimately on the electron
spin quantum number (the profiles for S = 1, 3/2, 2,
5/2 all exhibit major characteristic differences [2,6,
10,14]) as well as on the structure of the spin level
diagram and the detailed form of the zfs tensor. In
particular, there is a surprisingly strong dependence on
the low-symmetry components of the zfs tensor, i.e.,
on the orthorhombic zfs term E for S = 1 [3,5,6,10,
18,19], and on the tetragonal fourth-order zfs term for
SP 2 [5,11,13]. Our principal interest lies in under-
standing the relationship of NMR-PRE to the electron
spin level diagram.

This paper describes four theoretical approaches cur-
rently used at Michigan to analyze NMR paramagnetic
relaxation enhancement. These are: (1) spin dynamics
(SD) simulation [20–22], (2) the ‘‘constant HS’’ LF
(laboratory frame) formulation, (3) the ‘‘constant HS’’
MF (molecular frame) formulation, and (4) the ‘‘con-
stant HS’’ zfs-limit formulation [5]. These four formula-
tions are implemented in a computer program, Parelax2,
which has evolved from an earlier program, Parelax [23].
A program similar to Parelax has been developed by
Bertini et al. [24] in Florence. The algorithms of Pare-
lax2 and Parelax are based on quite different theoretical
formulations, and much additional functionality has
been added to the former.

We use the four approaches in a complementary
manner to provide as full a picture of the relaxation
mechanism as possible. Each approach has advantages
and drawbacks, none providing an entirely satisfactory
description of the relaxation process. SD simulation
provides a realistic description of the role of Brownian
reorientation on the spin motions and the I–S dipole–di-
pole coupling, which the ‘‘constantHS’’ formulations do
not. Thus the latter do not describe NMR-PRE quanti-
tatively when Brownian reorientation is an important
contributor to the dipolar correlation time.

The principal advantage of ‘‘constant HS’’ is that
these formulations, unlike SD, provide a physically
transparent description of the relaxation mechanism in
terms of the contributions of specific spin matrix ele-
ments (for example, ÆSzæ). Physical transparency re-
quires that the formulation be cast in a coordinate
frame corresponding to the spatial quantization of the
electron spin motion. It is for this reason that we use
either LF or MF formulations of ‘‘constant HS’’ theory
according to whether the electron spin system is in the
vicinity of the Zeeman- or zfs-limit.

A simple example of the kind of interpretation meant
is provided by the Zeeman-limit situation, where ÆSzæ is
a constant of the motion. The dipolar power band asso-
ciated with ÆSzæ is centered at zero frequency. In con-
trast, the non-vanishing matrix elements of ÆSxæ
oscillate at the electron Larmor frequency (xS), and
the associated dipolar power band is centered at xS.
NMR R1 relaxation depends on resonant coupling be-
tween the I and S spins, and thus the relaxation efficien-
cy depends on the low frequency motions (x � xI) of
the I–S dipolar power spectrum. In the Zeeman-limit,
ÆSzæ is usually the main contributor to the NMR-PRE,
except at low field strengths where the dipolar power
band of ÆSxæ significantly overlaps xI.

The zfs-limit and intermediate regimes of field
strength present many fascinating connections between
the spin level diagram and the NMR-PRE. For SP 2,
quite subtle level splittings [11] and wavefunction mixing
[13] arising from low symmetry fourth-order zfs compo-
nents can determine the form of the MRD profile. Phys-
ical interpretations of these phenomena are possible
within the ‘‘constant HS’’ formulations when the coordi-
nate frame matches that of the spatial quantization of
the spin motion. It is for this reason that we use both
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LF and MF formulations of theory. The fullest picture
of the spin physics is obtained when the four formula-
tions are used in a complementary way. (It should be
recognized that LF and MF formulations are not
approximations valid only in the Zeeman- and zfs-limits;
rather, they give identical numerical results for R1M in
all regimes of field strength as long as electron spin
relaxation is treated equivalently.)

The theoretical approaches implemented by Parelax2
differ from traditional approaches in that they emphasize
the use of operators for the local dipolar field of S. These
quantities are especially convenient for transforming the
problem between the LF and MF and for using different
coordinate frames to describe the electron and nuclear
spin motions. Prior descriptions of the four formulations
are incomplete and, in some cases, they differ from their
current implementation in Parelax2.Aunified description
of the theory that clearly shows the relationship of the var-
ious formulations to each other and the assumptions
underlying each is needed and is provided here. We also
discuss in some detail the integration of NMR-PRE theo-
ry with recently developed theory of electron spin relaxa-
tion, a topic which involves several subtleties.
2. General formulation of the problem

In MRD, paramagnetic enhancement of the solvent
R1 by a metal ion is mediated by chemical exchange
reactions, which transfer relaxed nuclear spins (usually
water protons) between the metal coordination sphere
and the pool of unbound solvent. When the bound mole
fraction (fM) is small, the NMR-PRE is given by [25]

R1p ¼ fM=ðT 1M þ sMÞ; ð2Þ
where T 1Mð¼ R�1

1MÞ is the relaxation time in the bound
site, and sM is the chemical exchange residence time.
The Zeeman-limit (SBM) theory of R1M is well known
[26–28]. In this and the following section, we develop
theory which incorporates the electron spin hamiltonian
of Eq. (1), where H 0

zfs has arbitrary form and magnitude.
From the linear response theory of Kubo and Tomita

[29,30], the T1 NMR relaxation rate is given by,

R1M ¼ ð2�h2Þ�131ðIðI þ 1ÞÞ�1

�
Z 1

�1
expðixI tÞfhIz;H 0

ISðtÞ�½H 0
ISð0Þ; Iz�igea dt;

ð3aÞ

H 0
IS ¼ expðixI tÞHIS expð�ixI tÞ; ð3bÞ

where xI is the nuclear Larmor frequency. The angle
brackets denote traces over the spin variables of I and
S, and the braces denote an ensemble average over
molecular degrees of freedom. HIS is the nuclear–elec-
tron (I–S) dipole–dipole hamiltonian, which is given in
spherical tensor form in Appendix A. For our purposes,
it is useful to write HIS in a somewhat different form as
an interaction of the nuclear magnetic moment,~lI , with
the local dipolar field operator, ~BS , of S:

HIS ¼�~lI �~BS ; ð4aÞ

¼ � cI�h
Xþ1

m¼�1

ð�1ÞmI ð1Þm Bð1Þ
�m. ð4bÞ

Eq. (4b) is written in spherical tensor form, e.g.,

I ð1Þ0 ¼ Iz; ð5aÞ

I ð1Þ�1 ¼ �2�1=2I�; ð5bÞ
and Bð1Þ

m are the spherical tensor components of ~BS . The
utility of Eq. (4b) lies in the fact that I and S have
different spatial quantization when H 0

zfs > HZeem, and
this form of HIS is convenient for expressing ~lI and ~BS

in their natural coordinate systems. The quantum
mechanical operator that describes ~BS can be construct-
ed as a first-rank tensor by contracting the electron spin
spherical tensor, S(1), with the second-rank spherical
harmonics, Y ð2Þ

m ðh;uÞ, the arguments of which are the
polar angles that specify the orientation of the interspin
vector, ~rIS , with respect to the laboratory magnetic
field, ~B0:

Bð1Þ ¼ cBfSð1Þ � Y ð2Þgð1Þ; ð6aÞ

Bð1Þ
m ¼ 31=2cB

Xþ1

p¼�1

ð�1Þ1�m 1 2 1

p ðm� pÞ �m

� �

� Sð1Þ
p Y ð2Þ

m�pðh;uÞ; ð6bÞ

cB ¼ �ð8pÞ1=2geber
�3
IS ðl0=4pÞ; ð6cÞ

where ge, be, and l0 are the electron g-value, Bohr mag-
neton, and vacuum permeability, and m = 0, ±1. Specif-
ic forms of the field operators, Bð1Þ

m , are given in
Appendix B. These quantities can be defined in either
a laboratory-fixed (LF) or molecule-fixed (MF) coordi-
nate frame as is convenient to describe the motions of
h~Si. We proceed with the LF formulation, but for the
MF formulations, we will use the MF expression for
HIS.

Inserting Eq. (4b) into Eq. (3a) gives

R1M ¼ ð2�h2Þ�13½IðI þ 1Þ��1
Xþ1

m;m0¼�1

ð�1Þmþm0

� h½I ð1Þ0 ; I ð1Þm �½I ð1Þm0 ; I
ð1Þ
0 �i

Z þ1

�1
dt expðixI tÞ

� hBð1Þ
�mðtÞB

ð1Þ
�m0 ð0ÞiS

n o
ea
. ð7Þ

The commutators can be evaluated using Racah�s
relations,

½I ð1Þ0 ; I ð1Þm � ¼ mI ð1Þm ; ð8Þ
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and the trace over the variables of I becomes

�ðmm0Þ I ð1Þm I ð1Þm0
� �

I
¼ �ðmm0Þ3�1IðI þ 1Þdmþm0dm2�1; ð9Þ

which vanishes unless m = �m 0 = ±1. The expression
for R1M becomes

R1M ¼ �c2I

Z þ1

�1
dt expðixI tÞRe Bð1Þ

þ1ðtÞB
ð1Þ
�1ð0Þ

D E
S

n o
ea
.

ð10Þ

The TCFs of the dipolar field can be evaluated from
Eqs. (6a)–(6c) to give

Bð1Þ
þ1ðtÞB

ð1Þ
�1ð0Þ

D E
¼ 24pg2eb

2
er

�6
IS

l0

4p

� �2
�
Xþ1

p;p0¼�1

1 2 1

p ð1�pÞ �1

� �
1 2 1

p0 ð�1�p0Þ 1

� �

� Sð1Þ
p ðtÞSð1Þ

p0 ð0Þ
D E

S
Y ð2Þ

1�pðh;u;tÞY
ð2Þ
�1�p0 ðh;u;0Þ.

ð11Þ

In this LF formulation, a further transformation of the
spherical harmonic functions is desirable, since these
functions are fixed in the MF. The transformation
can be accomplished by expanding the LF spherical
harmonics in terms of MF functions (denoted by a
karat)

Y ð2Þ
q ðh;uÞ ¼

X2
q0¼�2

Y ð2Þ
q0 ðĥ; ûÞD

ð2Þ
q0 ;qða; b; cÞ; ð12Þ

where Dð2Þ
q0 ;qða; b; cÞ are Wigner rotation matrix elements

and (a,b,c) are the Euler angles which rotate the MF
to the LF.

Inserting Eqs. (11) and (12) into Eq. (10) gives the fol-
lowing LF expression for R1M,

R1M ¼ � 48pðcIgebeÞ
2r�6

IS ðl0=4pÞ
2

�
X1

p;p0¼�1

1 2 1

p ð1� pÞ �1

� �
1 2 1

p0 ð�1� p0Þ 1

� �

�Re
X2

q;q0¼�2

Y ð2Þ
q ðĥ; ûÞY ð2Þ

q0 ðĥ; ûÞ
 

�
Z 1

0

dt eixI t Sð1Þ
p ðtÞSð1Þ

p0 ð0Þ
D E

S
expð�t=sMÞ

n

�Dð2Þ
q;1�pða;b; c;tÞD

ð2Þ
q0 ;�1�p0 ða;b; c;0Þ

o
ea

!

ð13Þ
in which all of the variables are defined in the LF except
ðĥ; ûÞ. A phenomenological decay function, exp(�t/sM),
has been inserted in the integrand to describe the inter-
ruption of I–S dipolar coupling due to chemical
exchange.
3. Electron spin relaxation

The spin TCFs,

Gp;p0 ðtÞ ¼ Sð1Þ
p ðtÞ � Sð1Þ

p0 ð0Þ
D E

; ð14Þ

describe both the coherent oscillations and thermal
relaxation of ÆSæ. To evaluate these quantities, Sð1Þ

p ðtÞ is
written in the Heisenberg representation,

Sð1Þ
p ðtÞ ¼ U yðtÞSð1Þ

p UðtÞ; ð15aÞ

UðtÞ ¼ expð�iHSða; b; c; tÞt=�hÞ; ð15bÞ

HSða; b; c; tÞ ¼ HZeem þ H 0
zfsða; b; c; tÞ þ H c

zfsðtÞ þ H v
zfsðtÞ.
ð16Þ

The stochastic time dependence of HS (a,b,c; t) produces
the thermal relaxation of S and arises from three phys-
ical processes, namely: (1) Brownian reorientation of
the zfs tensor axes (represented by H 0

zfsða; b; c;tÞÞ, (2) col-
lisional modulation of the zfs tensor components
ðH c

zfsðtÞÞ, and (3) zfs modulation by vibrational damping
[31] ðH v

zfsðtÞÞ. These three degrees of freedom are
approximately independent, and their relaxation contri-
butions are taken to be additive. The vibrational relaxa-
tion mechanism has been neglected by most (but not all
[32,33]) authors, and Parelax2 neglects it as well.

The reorientational zfs mechanism is described
implicitly in SD simulations but is ignored in all of the
‘‘constant HS’’ formulations, which neglect the time
dependence of H 0

zfs. This mechanism is discussed further
in Section 4.1 and in [22].

The collisional zfs mechanism arises from the sto-
chastic motions of H c

zfsðtÞ, a hamiltonian of zero trace
that describes the distortion of the zfs tensor during
intermolecular collisions. Detailed dynamic modeling
of these motions within a theory of NMR relaxation is
difficult because of the complexity of the molecular force
fields and the complex relationship of nuclear motions
to the motion of the zfs tensor, as is illustrated by the
first-principles calculations for Ni(H2O)6

2+ of Odelius
et al. [34,35]. Further complicating the description is
the wide range of time-scales in the problem. Redfield
Theory, which assumes that the correlation time, sv,
for zfs distortion is short compared to the relaxation
time, sS, is not always appropriate when sS is very short.
Considerable progress on a non-Redfield theory has
been made within the SLE formalism by modeling the
distortion process as a pseudorotation [16,36–38]. A
Monte Carlo approach to the non-Redfield calculation
has also been reported by Rast et al. [39]. Within the
Redfield approximation, quite simple zfs-limit expres-
sions for sS (defined in the MF) have been derived by
Westlund [40] for the spin-1 case. Bertini et al. [41] sub-
sequently generalized these results to non-Redfield situ-
ations using SLE. Detailed Redfield calculations of ESR
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linewidths of the S = 7/2 ion Gd(III) have been reported
by Rast et al. [42,43], whose treatment included the ef-
fects of cylindrical fourth-order zfs terms. Gd(III) is
especially interesting chemically because of research
concerning the use of Gd complexes as MRI contrast
agents.

Parelax2 describes electron spin relaxation using the
theory of Sharp [44], which calculates the electron spin
relaxation times in NMR experiments, where the elec-
tron spin hamiltonian is at thermal equilibrium. This
theory accounts for the effects of H 0

zfs and is valid for
all S, subject to the Redfield approximation. The inte-
gration of the NMR and electron spin relaxation theo-
ries is discussed in Section 5. The following three
options are provided by Parelax2: (1) field-independent
parameters, sSX (Y,Z), can be entered; (2) sS, r can be cal-
culated using the well known Zeeman-limit theory of
Bloembergen and Morgan (BM) [28]; (3) sS, r can be cal-
culated using the theory of [44] (see Section 5).
4. The four formulations of theory

This section describes the four formulations of
NMR-PRE theory used by Parelax2, thus continuing
the development of Section 2. Section 5 discusses the
integration of the theoretical descriptions of NMR and
electron spin relaxation.

4.1. Spin dynamics simulation

Spin dynamics simulations [20–22] evaluate the TCF
of Eq. (14) in the time domain as an ensemble average of
Brownian trajectories of the spin motion, using the ham-
iltonian of Eq. (1) to calculate the propagator of Eqs.
(15b). SD simulation describes the influence of the reori-
entation of the zfs principal axes on the electron spin
motion, and thus SD calculates the zfs-reorientational
contribution to electron spin relaxation directly. The ef-
fects of H c

zfsðtÞ (the collisional mechanism) are incorpo-
rated in the form of an exponential factor in Gp;p0 ðtÞ as
described above and in Section 5.

We outline the SD algorithms briefly here (see also
[22]). Molecular reorientation is modeled as a classical
random-walk, following the work of Ivanov [45], in
which molecular reorientation is comprised of a stochas-
tic sequence of rotational jumps separated by random
intervals. The rotation axis of each jump is randomly
oriented in space. The jump angles are distributed ran-
domly as a Gaussian deviate of zero mean and a width
r/. Thus the molecular motion is described as a thermal
ensemble of trajectories, each consisting of a sequence of
intervals of random duration, (t1, t2, t3, . . .), in which
molecular orientation is fixed, connected by sudden
rotational jumps. The propagator of Eqs. (15b) can be
decomposed as follows
Uðt; t0Þ ¼ U ð0Þðt1; t0ÞU 0ðt1Þ;U ð1Þðt2; t1ÞU 0ðt2Þ � � �U ðnÞðt; tnÞ;
ð17Þ

where U(n) (t, tn) is the propagator in the interval
sn fi sn + 1, and U 0 (tn) is the propagator for the jump
connecting the intervals, n and n + 1. If it is assumed
that jumps are rapid compared to the inverse transition
frequencies of HS, the state vector is unaffected (this is
the ‘‘Sudden Approximation’’ [46,47])

U 0ðtnÞ ¼ 1. ð18Þ

After the nth reorientational jump in a trajectory, the
Wigner rotation matrix elements in Eq. (13) and the spin
Hamiltonian in Eq. (16) are re-evaluated. The spin
propagator,

Uðt; tnÞ ¼ expð�iHSðt � tnÞ=�hÞ; ð19Þ

is then evaluated from the series definition and used to
propagate the spin variables across the time interval,
(tn fi tn + 1). In this way, trajectories of the Gp;p0 ðtÞ are
computed across a total time interval which is chosen
to be sufficiently long to ensure the decay of the TCF.
The number of time steps in a trajectory depends on
the physical situation: it can range from as few as 30
when electron spin relaxation is rapid compared to the
coherent spin oscillations to several thousand in oppo-
site case. In all cases, the time interval between adjacent
jumps must be short enough to describe the fastest oscil-
lations of the spin motion, and the total duration of the
simulation must be long enough to describe the thermal
decay of the TCF.

Propagation of the spin operators is carried out in the
LF. Therefore SD is an LF formulation, which requires
that electron spin relaxation be defined in the LF rather
than the MF (see Section 5.1). Because SD is a time-do-
main formulation, it cannot incorporate eigenstate-spe-
cific electron spin relaxation times. Referring to the
discussion of Section 5, SD can incorporate the
relaxation times, sS1,2, of BM Theory; also, the eigen-
state-averaged relaxation times, sS,r, of [44]; but not
eigenstate-specific relaxation times, sðlÞS;r , or relaxation
times, ŝS;r, and ŝðlÞS;r , defined in the MF.

4.2. The LF ‘‘constant HS’’ formulation

The ‘‘constant HS’’ formulations ignore reorientation
of the zfs principal axes, with the result that
H 0

zfsða; b; c; tÞ is taken to be time-independent as in a
powder,

HSða; b; c; tÞ ¼ HZeem þ H 0
zfsða;b; cÞ þ H c

zfsðtÞ; ð20aÞ
¼ H 0

Sða; b; cÞ þ H c
zfsðtÞ. ð20bÞ

The static hamiltonian, H 0
Sða; b; cÞ, drives the coherent

spin oscillations, and H c
zfsðtÞ is the stochastic hamiltoni-

an which drives electron spin relaxation. In this
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approximation, the theory simplifies considerably, since
the spin eigenfunctions are time-independent, and the
TCFs of Eq. (14) can be evaluated in closed form.
Expressing Gp;p0 ðtÞ as a trace, we have

Gp;p0 ðtÞ ¼ Tr q	
S expðiHSðtÞt=�hÞSð1Þ

p

Dj
� expð�iHSðtÞt=�hÞSð1Þ

p0 ð0Þ
Ek

¼ ð2S þ 1Þ�1
X
l;m

hljSð1Þ
p jmihmjSð1Þ

p0 jli

� exp �i xlm � 1=sðlÞS;p

h i
t

� �
; ð21Þ

where {l,m} are eigenvectors of H 0
Sða; b; cÞ and xl,m are

eigenfrequencies. The electron spin density matrix, q0
S ,

is diagonal in NMR experiments. We further assume
the high-temperature limit, where

q0
S ¼ ð2S þ 1Þ�1

1. ð22Þ

Inserting these results into Eq. (13) and evaluating
the integral gives the following LF ‘‘constant HS’’
expression for R1M:

R1M ¼ � 48pðcIgebeÞ
2r�6

IS ðl0=4pÞ
2

�
X1

p;p0¼�1

1 2 1

p ð1� pÞ �1

� �
1 2 1

p0 ð�1� p0Þ 1

� �

�
X2

q;q0¼�2

Y ð2Þ
q ðĥ; ûÞY ð2Þ

q0 ðĥ; ûÞ

�
(
Dð2Þ

q;1�pða;b; cÞD
ð2Þ
q0 ;�1�p0 ða;b; cÞ

� ð2S þ 1Þ�1
X
l;m

ljSð1Þ
p jm

D E
mjSð1Þ

p0 jl
D E

jðlÞp ðxlmÞ
)

ea

;

ð23aÞ

jðlÞp ðxlmÞ ¼
sðlÞd;p

1þ ðxI � xlmÞ2ðsðlÞd;pÞ
2
; ð23bÞ

ðsðlÞd;pÞ
�1 ¼ ðsð2ÞR Þ�1 þ ðsðlÞS;pÞ

�1 þ ðsMÞ�1. ð23cÞ

The dipolar correlation rate of Eq. (23c) has contribu-
tions from Brownian reorientation, collisional electron
spin relaxation, and chemical exchange. In the general
physical situation, the electron spin relaxation rate,
sðlÞS;p, depends on spin eigenstate (l) and on the spatial
coordinate of spin decay (p = 0, ±1) (Section 5 contains
further discussion). In most applications, the electron
spin relaxation rates are taken to be the eigenstate-aver-
aged values, (sS, p)

�1, in which case the superscript (l) is
not needed in Eqs. (23a)–(23c).

The ensemble average (ea) is calculated over molecu-
lar orientations. Parelax2 implements this by averaging
a set of 92 orientations where the polar angles of ~B0 in
the MF are specified by the polar angles of the 60
vertices and 32 face centers of the truncated icosahedron
(buckeyball).

4.3. The MF ‘‘constant HS’’ formulation

The MF formulation of the theory provides a more
transparent description of physical situations in the
vicinity of the zfs-limit, where the motion of S is spatially
quantized (or polarized) along molecule-fixed axes.
Starting from Eq. (10), Bð1Þ

�1 are transformed to the MF as

Bð1Þ
�1 ¼

Xþ1

q¼�1

B̂
ð1Þ
q Dð1Þ

q;�1ða; b; cÞ; ð24Þ

giving

R1M ¼ � c2I

Z þ1

�1
dt expðixI tÞRe

( X1
q;q0¼�1

B̂
ð1Þ
q ðtÞB̂ð1Þ

q0 ð0Þ
D E

S

� Dð1Þ
q;þ1ða; b; c; tÞD

ð1Þ
q0 ;�1ða; b; c; 0Þ

)
ea

. ð25Þ

Using the component expressions for B̂ð1Þ in Appendix B
but with spin ðŜð1Þ

p Þ and spatial variables ðĥ; ûÞ defined in
the MF, leads to the following expression for R1M:

R1M ¼ � 48pðcIgebeÞ
2r�6

IS ðl0=4pÞ
2
X1

q;q0¼�1

X1
p;p0¼�1

�
1 2 1

p ðq� pÞ �q

� �
1 2 1

p0 ðq0 � p0Þ �q0

� �

� ð�1Þqþq0Y ð2Þ
q�pðĥ; ûÞY

ð2Þ
q0�p0 ðĥ; ûÞ

�
(
Dð1Þ

q;þ1ða; b; cÞD
ð1Þ
q0;�1ða; b; cÞ

�ð2S þ 1Þ�1
X
l;m

ljŜð1Þ
p jm

D E
mjŜð1Þ

p0 jl
D E

ĵpðxlmÞea

)
;

ð26aÞ

ĵpðxlmÞ ¼
ŝd;p

1þ ðxI � xlmÞ2ðŝd;pÞ2
. ð26bÞ

The spin matrix elements in Eq. (26a) are evaluated in
the eigensystem of H 0

Sða; b; c;tÞ, as in the LF formula-
tion, but the spin components, Ŝ

ð1Þ
q , are defined with re-

spect to the MF.
The dipolar correlation time, ŝd;p, is defined as

follows:

ðŝd;pÞ�1 ¼ ðsð1ÞR Þ�1 þ ðŝS;pÞ�1 þ ðsMÞ�1
; ð26cÞ

which differs from the dipolar correlation time of LF
theory in two ways. First, the reorientational correlation
time is that for a 1st-rank, rather than a 2nd-rank, mol-
ecule-fixed tensor, corresponding to the 1st-rank Wigner
rotation matrix elements in Eq. (26a). These correlation



Fig. 1. Flux lines of a magnetic moment, ~lS , oriented along the rth
cartesian axis are shown. A contour of the function, [1 + P2(cos hIS)],
which describes the angular variation of the mean-square local field at
constant I–S interspin distance, is also shown.
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times are related as sð1ÞR ¼ 3sð2ÞR . The fact that sð1ÞR , rather
than sð2ÞR , appears in the MF formulation reflects the fact
that the I–S dipolar interaction transforms on molecular
rotation as a vector when S is quantized in the MF [1]. It
should be recognized, however, that the MF ‘‘constant
HS’’ formulation does not give a very accurate descrip-
tion of the effects of Brownian motion in any regime
of field strength, including the zfs-limit, because it
ignores the effect of reorientation of the zfs tensor axes
on electron spin relaxation, for which an accurate
description requires SD. In practical analyses, we often
omit sð1ÞR in Eq. (26c) and use Eq. (26a) as subject to a
slow reorientation assumption.

The second difference in sd, p and ŝd;p is in the electron
spin relaxation times, which must be defined in the LF
for the former and the MF for the latter (see Section
5). As in Eqs. (23a)–(23c), we take these quantities to
be averaged over eigenstates.

4.4. ‘‘Constant HS’’ ZFS-limit theory [5]

This MF formulation is valid only in the zfs-limit, un-
like the MF formulation of the previous section (Eqs.
(26a)–(26c)), which is valid is in all regimes of field
strength. In the zfs limit, the spin motion is polarized
along the zfs principal axes ðx̂; ŷ; ẑÞ, and the NMR-
PRE depends on the orientation of the interspin vector,
~rIS , in the molecular frame. The ‘‘constant HS’’ zfs-limit
formulation provides explicit functional forms for the
angular dependence of R1M on ðĥ; ûÞ, the polar angles
which specify the orientation of the I–S interspin vector
in the MF.

It has been shown [5] that in the zfs-limit, R1M can be
written as a sum of cartesian contributions,

R1M ¼
X

R1r ðr ¼ x̂; ŷ; ẑÞ ð27aÞ

each of which contains the matrix elements of a single
spin component, hŜri:

R1r̂ ¼ ð8=3ÞðgebecIÞ
2ðl0=4pÞ

2r�6
IS ð2S þ 1Þ�1

� ½1þ P 2ðcos ĥrÞ�
X
l;mPl

j ljŜrjm
� �

j2ĵrðxlmÞ. ð27bÞ

Thus R1x̂ depends only on hŜxi, etc. The function,
½1þ P 2ðcos ĥrÞ�, describes the angular variation of the
NMR-PRE with respect to nuclear spin position in the
MF. P 2ðcos ĥrÞ is the 2nd-order Legendre polynomial,
the argument of which is the direction cosine of~rIS with
respect to the rth zfs principal axis. The physical signif-
icance of these functions is that they describe the angu-
lar variation of the mean-square local field of a dipole
moment (either classical or quantum mechanical) locat-
ed at the origin and oriented along the rth cartesian axis
(see Fig. 1) [5].

In most cases, the matrix elements, hljŜrjmi, of specif-
ic spin components are responsible for the various well-
defined dispersive features in an MRD profile. The
amplitudes of these features depend on nuclear orienta-
tion ðĥrÞ as described by Eqs. (27b). As a zfs-limit
example for S = 1, when the zfs tensor has cylindri-
cal symmetry (i.e., D „ 0, E = 0), hŜzi is a constant of
the motion, and R1M � R1ẑ. In this case, R1M varies as
½1þ P 2ðcos ĥzÞ� and is essentially independent of ĥx
and ĥy . The dependence of R1M on the orientation of
r̂IS is as illustrated in Fig. 1 with r ¼ ẑ. At fixed I–S
interspin distance, axial nuclear locations ĥz ¼ 0 are
relaxed four times more efficiently than equatorial
locations ĥz ¼ p=2. An experimental example is
discussed in [8].

For other spins and other zfs tensor symmetries, hŜxi
and hŜyi may contribute significantly to R1M. The trans-
verse spin components are usually not constants of the
motion. These contributions often produce well defined
dispersive features, the amplitudes of which are propor-
tional to ½1þ P 2ðcos ĥxÞ� and ½1þ P 2ðcos ĥyÞ�. An exper-
imental example involving the S = 3/2 ion, Co(II), is
discussed in [9].
5. The collisional electron spin relaxation mechanism

The collisional electron spin relaxation mechanism
(i.e., that due to H c

zfsðtÞ in Eq. (16)) involves some subtle-
ties which require further discussion. This mechanism
has traditionally been described by the Zeeman-limit
BM theory [28]. As described in Section 3, Parelax2 pro-
vides this as one option. Another option is provided
which calculates sS using theory [44,48], which incorpo-
rates the hamiltonian of Eqs. (20a) and (20b). The spin
TCF in Eq. (14) can be written
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Gp;p0 ðtÞ ¼ ð2S þ 1Þ�1Tr U yðtÞSð1Þ
p UðtÞSð1Þ

p0

h i
; ð28aÞ

¼ ð2S þ 1Þ�1
X
l

expð�t=sðlÞS;pÞ

� lj expðiH 0
St=�hÞSð1Þ

p expð�iH 0
St=�hÞS

ð1Þ
p0 jl

D E
.

ð28bÞ

From Eqs. (28b), sðlÞS;p, describes the thermal decay of the
lth matrix element of the trace. These eigenstate-specific
quantities, for which expressions have been derived in
terms of Redfield matrix elements [48], are appropriate
for use in the LF ‘‘constant HS’’ formulation (Eqs.
(23a)). For example, the term in Eq. (23a) which con-
tains the matrix element, hljSð1Þ

p jmi, requires an associat-
ed spectral density function, jðlÞp ðxlmÞ, calculated using
the eigenstate-specific decay constant, sðlÞS;p.

The use of eigenstate-specific decay constants is over-
ly complex for most applications. What is needed is a
description of electron spin relaxation that is compara-
ble in complexity to BM Theory (i.e., two magnetic
field-dependent electron spin relaxation times, sS1,2,
determined by two physical parameters, D2

t and sm) but
which accounts for the effects of H 0

zfsða; b; cÞ. This is pro-
vided by decay constants, sS,r, which are averaged over
spin eigenstates. Sharp [44] gives the following expres-
sions for these quantities:

ðsS;rÞ�1 ¼ ½SðS þ 1Þ=3��1ð2S þ 1Þ�1ðD2
t =5Þ

�
X
q

nðrÞq

X
l;m

ljSð2Þ
q jm

D E			 			2kðxlmÞ
( )

ea

; ð29aÞ

kðxÞ ¼ sm=ð1þ x2s2mÞ. ð29bÞ
The Sð2Þ

q in Eq. (29a) are the five quadratic cartesian ten-
sor functions of the spin operators which transform spa-
tially like the d-orbitals (q = 1–5 correspond to z2,
x2 � y2, xz, yz, xy). The quantities, nðrÞq , are integer coef-
ficients which arise in a calculation of the double com-
mutators of the spin operators [44]. The matrix
elements are evaluated in the eigenbasis, l,m, of
H 0

Sða; b; cÞ, and Dt has units of rad s�1.
The relaxation times, sS,r, are suitable for use in the

LF formulations of theory (i.e., SD simulation and the
LF ‘‘constant HS’’ formulation). These quantities are
analogous to the relaxation times, sS1,2, of BM Theory
but account for the effects of H 0

zfs, which may have any
magnitude or symmetry. Two physical parameters, Dt

and sv, are required for the calculation as in BM Theory.
5.1. LF versus MF formulations

The MF formulations require a different set of relax-
ation times, namely, ŝðlÞS;r or ŝS;r, describing the decay of
spin TCF�s, Ĝp;p0 ðtÞ, along molecule-fixed axes. These de-
cay constants can be calculated using expressions analo-
gous to Eqs. (29a) and (29b) but cast in the molecular
frame; in particular, the matrix elements of the MF spin
operators, Ŝ

ð2Þ
q , are needed instead of the LF spin oper-

ators, Sð2Þ
q . Parelax2 carries out the LF and MF calcula-

tions separately. In the first step, H 0
Sða; b; cÞ is

formulated in the desired coordinate frame, either LF
or MF. Then H 0

Sða; b; cÞ is diagonalized, and the spin
matrix elements are calculated, hljSð2Þ

q jmi for the LF cal-
culation and hljŜð2Þ

q jmi for the MF calculation. In both
calculations, the spin matrix elements are evaluated in
the eigenbasis of H 0

Sða; b; cÞ. Both sets of electron spin
relaxation times, sS,r (r = x,z) and ŝS;r ðr ¼ x̂; ŷ; ẑÞ, are
calculated in each physical situation. The LF decay con-
stants are used in the LF formulations (SD and LF
‘‘constant HS’’), and the MF decay constants are used
in the MF formulations (MF ‘‘constant HS’’ and zfs-
limit ‘‘constant HS’’).

Complications due to effects of molecular anisotropy
arise in the MF calculation of ŝS;r that are absent in the
LF calculation. In many practical cases, these effects can
be ignored, but we give a brief account of them. The
contribution of each quadratic degree of freedom to
ŝS;r depends on a mean-square zfs coupling constant,
c2q, and a correlation time, sðqÞv , which in general differ
for different q. In metalloporphyrins, for example,
q ¼ 2 ðx̂2 � ŷ2Þ has quite different dynamical and elec-
tronic properties than q ¼ 1 ðẑ2Þ. In general, five distinct
values of c2q and sðqÞv are needed for the anisotropic case.
Also, there is a cross term between ẑ2 and x̂2 � ŷ2 in the
MF form of Eqs. (29a) and (29b) (it vanishes in the LF)
which is in general non-zero when H 0

zfs contains low
symmetry terms [44]. Parelax2 can carry out these calcu-
lations, but this involves increased complexity in the
physical parameterization, which is usually not warrant-
ed in experimental studies. When molecular anisotropy
is neglected, a single zfs parameter, D2

t ¼ 5c2q, is needed
as in BM Theory.

These effects of molecular anisotropy do not arise in
LF calculations, since spin decay along laboratory axes
in a powder is uncorrelated with the zfs tensor
orientation.

5.2. Limiting behavior

The limiting behavior of sS,r and ŝS;r has some inter-
esting aspects. In the Zeeman-limit, the LF quantities
(sS,z, sS,x) are equal to the BM quantities (sS1,2) as
expected. However the MF quantities, ŝS;r, do not; rath-
er, the average MF relaxation rate approaches the aver-
age LF relaxation rate; i.e.,

ðŝS;zÞ�1 ¼ ðŝS;xÞ�1 ¼ ðŝS;yÞ�1 ¼ 3�1ðs�1
S1 þ 2s�1

S2 Þ.

That the MF polarizations are equivalent in the Zee-
man-limit ðx̂ ¼ ŷ ¼ ẑÞ reflects the fact that the molecular
axes are uncorrelated with HZeem.
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In the zfs-limit, there are three distinct MF relaxation
times ðr ¼ x̂; ŷ; ẑÞ when H 0

zfs has orthorhombic symmetry
and two when H 0

zfs is cylindrical. In this limit, the labo-
ratory axes are uncorrelated with the spin motion, and
the LF relaxation rates approach the average of the
MF relaxation rates

ðsS;zÞ�1 ¼ ðsS;xÞ�1 ¼ 3�1ðŝ�1
Sx þ ŝ�1

Sy þ ŝ�1
Sz Þ.
6. Discussion

It should be noted that the LF and MF ‘‘con-
stant HS’’ formulations of Sections 4.2 and 4.3 are
not limiting expressions valid only in the Zeeman
and zfs-limits, respectively. Rather, both formulations
are valid in all regimes of field strength, providing
that electron spin relaxation is treated equivalently,
i.e., when all electron spin relaxation times for all
spatial polarizations in both MF and LF have the
same numerical value. Physically, this occurs when
sm is very short. Since the average value of the
sS,r (r = x,z) equals that of the ŝS;rðr ¼ x̂; ŷ; ẑÞ, it also
occurs when electron spin relaxation is isotropic in
both the LF and MF. When this is not true, the
LF and MF formulations give different results for
R1M.

The principal rationale for using both LF and MF
formulations involves physical transparency. When
the coordinate frame matches the spatial quantization
of the spin motion (but not otherwise), the spin ma-
trix elements are readily interpretable physically. In
the Zeeman-limit, for example, ÆSzæ is a constant of
the motion, and ÆSxæ oscillates at the Larmor fre-
quency. The contributions of the LF spin matrix ele-
ments in Eq. (23a) are readily interpretable since the
associated spectral density functions, which describe
the power density of the dipolar field, are evaluated
at spin eigenfrequencies. The MF quantities, hŜzi
and hŜxi, in Eq. (26a) are not so readily interpretable,
since the Zeeman-limit spin motion is not quantized
along molecular axes. Of course, the converse is true
in the vicinity of the zfs-limit, where the MF descrip-
tion is physically informative but the LF description
is not. In all regimes of field strength, however, both
LF and MF formulations give identical numerical re-
sults for R1M as long as electron spin relaxation is
treated equivalently.
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Appendix A. Spherical tensor form of the I–S dipole–

dipole hamiltonian in SI units

HIS ¼ � 6p
5

� �1=2 cIgebe

r3IS

� �
l0

4p

� �
ðAþ C þ Dþ E þ F Þ;

ðA:1Þ

A ¼ 2 � 6�1=2 2I ð1Þ0 Sð1Þ
0 þ I ð1Þþ1S

ð1Þ
�1 þ I ð1Þ�1S

ð1Þ
þ1

� �
Y ð2Þ

0 ðh;/Þ;

ðA:2Þ

C ¼ �21=2 I ð1Þþ1S
ð1Þ
0 þ I ð1Þ0 Sð1

þ1

� �
Y ð2Þ

�1ðh;/Þ; ðA:3Þ

D ¼ �21=2 I ð1Þ�1S
ð1Þ
0 þ I ð1Þ0 Sð1Þ

�1

� �
Y ð2Þ

þ1ðh;/Þ; ðA:4Þ

E ¼ þ2 I ð1Þþ1S
ð1Þ
þ1

� �
Y ð2Þ

�2ðh;/Þ; ðA:5Þ

F ¼ þ2 I ð1Þ�1S
ð1Þ
�1

� �
Y ð2Þ

þ2ðh;/Þ. ðA:6Þ
Appendix B. Spherical tensor components, Bð1Þ
m , of the

dipolar field operator, B(1), defined in Eq. (6b) of the text.
The spatial arguments, h, u, of Bð1Þ

m ðh;uÞ, and Y ð2Þ
q ðh;uÞ

are omitted for brevity

Bð1Þ
þ1 ¼ cB3

1=2 30�1=2Sð1Þ
þ1Y

ð2Þ
0 �10�1=2Sð1Þ

0 Y ð2Þ
þ1þ5�1=2Sð1Þ

�1Y
ð2Þ
þ2

� �
;

ðB:1Þ

Bð1Þ
0 ¼ � cB3

1=2 �10�1=2Sð1Þ
þ1Y

ð2Þ
�1 þ 21=215�1=2Sð1Þ

0 Y ð2Þ
0

�
�10�1=2Sð1Þ

�1Y
ð2Þ
þ1

�
; ðB:2Þ
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�2�10�1=2Sð1Þ
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�1Y
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cB ¼ �geber
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1=2ðl0=4pÞ. ðB:4Þ
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